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Abstract

We present recent ab initio calculations of the ideal shear strengths of aluminum and copper using pseudopotential density
functional theory within the local density approximation. Structural relaxations orthogonal to the applied shear significantly
reduce the values of ideal shear strength, resulting in strengths of 8–9% of the shear modulus for both Al and Cu. However, the
geometry of the relaxations in Al and Cu is very different. To some degree, this can be explained using experimentally measured
third-order elastic constants. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given recent advances in theoretical methods and
computing machinery, it has become possible to com-
pute the low-temperature elastic behavior of elemental
solids and ordered compounds with encouraging accu-
racy [1]. Since the linear elastic constants of almost all
the important elements and compounds are known
experimentally, and third- and fourth-order constants
are available for many of them, this scientific break-
through may not seem to have much practical impor-
tance. But, from a broader perspective, it may.

The elastic properties of a material do not just deter-
mine its response to small strains. They are also the
scaling parameters that measure the first-order differ-
ences in the strengths of materials. The classic models
of the Peierls–Nabarro stress (or, perhaps more appro-
priately, the double-kink nucleation stress) that govern
the onset of plasticity, the dislocation–obstacle interac-
tions that produce hardening, and the shear and tensile
instabilities that set the upper bounds on mechanical
strength all scale linearly with the appropriate elastic

constants [2,3]. This scaling is borne out experimentally.
For example, Fig. 1 plots typical hardness values of the
common elements and compounds against the polycrys-
talline shear modulus. While the data divide according
to bond type, and scatter appreciably, they support the
classical idea that the elastic modulus is a first-order
determinant of strength. It follows that a deep under-
standing of elastic behavior should enhance both the
science and the practical control of mechanical
strength.

As part of a study of the limits of strength in
homogeneous deformation, we have recently completed
ab initio calculations of the response of Al and Cu to
homogeneous shear [4]. The calculations carry that
shear to the point of instability, or the ‘‘ideal shear
strength’’. In the present paper, we shall briefly review
those results, then discuss the similarities and differ-
ences in the large-strain elastic behavior of Al and Cu.
In the fully relaxed case, the two have very similar
strengths (when these are expressed in dimensionless
form), but very different relaxation strains.

2. Method of calculation

The total energies of Al and Cu were computed as
functions of strain using the pseudopotential total-en-
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Fig. 1. Log–log plot of bulk hardness as a function of shear modulus.
Solid line, solid squares refer to covalent compounds, dashed line,
dotted squares refer to ionic compounds, solid circles, broken line
refer to metals and alloys.

strain define the stresses that drive incremental defor-
mation, and, therefore, the true strain is used to calcu-
late the stress.

The energy is a unique function of the strain, �13,
when either: (1) the crystal is unrelaxed, so �13 is the
only non-zero strain, or (2) the crystal is fully relaxed,
so setting the value of �13 fixes all the other strains. In
either case, the conjugate shear stress is,

�=�13=
1
V

�E
��13

=
1
V

�E
��13

, (5)

where �ij=�ij+�ji=2�ij is the shear, and V is the atomic
volume at the applied strain. The relevant shear mod-
ulus, G �, is determined by the second-derivative, �2E/
��2. For shear in the [1 1 2� ] direction on the (1 1 1)
plane of fcc, the shear moduli are,

G �u=C �55=
1
3

[C11+C44−C12], (6)

G �r=
1

S �55

=
3C44(C11−C12)

4C44+C11−C12

, (7)

where G �u governs the unrelaxed case, �ij=0 unless
ij=13 or 31 (=5 in the Voigt notation), G �r governs
the relaxed case, �ij=0 unless ij=13 or 31, the Cij are
the Voigt elastic constants for the cubic crystal, and C �
and S � are, respectively, the Voigt elastic constants and
compliances in the coordinate system shown in Fig. 2.
The moduli govern incremental displacements from the
current state and are, hence, functions of the strain.

3. Results

The results of the calculations are summarized in
Tables 1–3 (reproduced from Ref. [4]) and in Fig. 3.
Table 1 compares the calculated and experimental val-
ues for the lattice constants and shear moduli at zero
applied strain. The close agreement indicates the accu-
racy of the calculations.

Fig. 3 plots the stress–strain relations of Al and Cu
for relaxed shear. For comparison, we have included
the sinusoidal curve for Cu suggested by Frenkel [8].
The stresses and strains at instability are tabulated in
Tables 2 and 3. The results show the importance of
elastic relaxation, which decreases the shear strength
some 40% from the unrelaxed value. Interestingly, the
normalized shear strengths of Al and Cu in the fully
relaxed state are essentially identical (0.085G �r) and are
much closer to the classic Frenkel estimate (0.1G) than
to the more modern estimates that have been preferred
in recent years [3].

The elastic strain at shear instability is tabulated in
Table 3. The imposed shear is �13, a displacement of the
(1 1 1) planes in the [1 1 2� ] direction. The relaxation

ergy scheme [5,6]. Computational details are given in
Ref. [4]. The shear stress is found by straining the
crystal in a series of incremental simple shears, calculat-
ing the energy and volume as functions of the strain,
and taking the derivative of the energy with respect to
the strain. The ideal shear strength (in the low-tempera-
ture limit) is the maximum value of this stress. In both
Al and Cu, the shear strength is minimum for shear on
the (1 1 1) plane in the [1 1 2� ] direction. It is, therefore,
useful to refer the displacements to a Cartesian coordi-
nate system with a unit vector, e3, perpendicular to the
(1 1 1) plane and unit vectors e1 and e2 parallel to the
[1 1 2� ] and [1 1� 0] directions, respectively (Fig. 2). With
this notation, an incremental simple shear in the [1 1 2� ]
direction on (1 1 1) takes the form,

��=�13(e1e3+e3e1). (1)

To increment the strain under fully relaxed conditions,
we impose �13 (=�31), and adjust the other components
of the strain tensor until their associated stresses vanish
(specifically, until the calculated Hellman–Feynman
stresses are �0.05 GPa). Since �12=�23=0 by symme-
try, the relaxation strains are stretches along the coordi-
nate axes.
While there is no unique definition of finite strain [7],
the three lattice parameters, a�, are defined at each step
of the deformation and can be described by the three
functions, a�(n), where n is the number of incremental
strain steps in the simulation. If D(n,m) is the Cartesian
tensor that describes the deformation between steps m
and n,

ai
�(n)=ai

�(m)+Dij(n,m) aj
�(m). (2)

Given D(n,m), the true strain, �, and the engineering
strain, �E, are defined as,

�ij(n)=
1
2

�
n

m=2

[Dij(m,m−1)+Dji(m,m−1)], (3)

� ij
E(n)=

1
2

[Dij(n,0)+Dji(n,0)]. (4)

The derivatives of the energy with respect to the true
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volume is almost constant. Al, on the other hand, is
relaxed primarily by a shear in the (1 1 2� ) plane, with
�33� −�22��11. The (1 1 1) interplanar spacing in-
creases by �3%, and the volume increases by 1.4%.

4. Discussion

Both the similarities and differences in the behavior
of Al and Cu merit discussion. The most striking
similarities are the crystallography of the shear that
produces minimum strength (the weak direction in both
Al and Cu is in the �1 1 2� direction in a {1 1 1} plane)
and the virtual identity of the normalized shear
strengths. The most striking dissimilarity is the qualita-
tive difference in the relaxation strain.

The soft direction in shear: A shear in a �1 1 2�
direction in a {1 1 1} plane in a material with the fcc
crystal structure is a shear that is associated with
twinning in {1 1 1} and with the partial slip at the

Fig. 2. Illustration of the atomic arrangement before and after
unrelaxed shear in Al and Cu. The cages give the original atom
positions in the fcc lattice, the solid spheres show atom positions at
the point of shear instability. The Cartesian coordinate system is
illustrated at left: {e1, e2, e3}={[1 1 2� ], [1 1� 0], [1 1 1]}.

Table 1
Calculated and experimental lattice parameters and elastic moduli

CuAl

Calculated Experimenta Calculated Experimenta
l l

4.12 3.613.574.05Lattice
constant
(A� )a

22�3 30�4 30.5(G �r) (GPa)b 24.5
(G �u) 24.8 40.827�3 40�4

(GPa)b

a Experimental values from Wyckoff [9].
b Shear moduli are defined by Eqs. (6) and (7). Experimental Voigt

elastic constants are from Nelson [10].

Table 2
Ideal shear strengths with and without structural relaxations

Failure stress

�u (GPa)�r/G �r �u/G �u�r (GPa)

1.85�0.1 0.084Al 3.4�0.1 0.13
Cu 0.102.65�0.2 0.088 4.0�0.1

strains are the stretches, �11 and �22 in the (1 1 1) plane,
and �33 perpendicular to it. The primary shear strain
(�13

E ) at instability is nearly the same for Al and Cu
(Table 3), and is significantly below the value (17.8%)
that a rigid-ball model would produce.

However, the relaxation strains in the two cases are
dramatically different (Fig. 2). Cu is relaxed by a shear
in the (1 1 1) plane in which a contraction in the
direction of shear displacement (�11) is balanced by a
perpendicular expansion (�22). The separation between
(1 1 1) planes is almost unchanged (�33 small), so the

Table 3
Engineering strains at shear instability

Failure strain (%)

�11
E�13

E �22
E �33

E �V/V0

Al 1.4−3114.5 3
−3Cu 0.40.2313



C.R. Krenn et al. / Materials Science and Engineering A317 (2001) 44–48 47

Fig. 3. Stress vs. engineering strain for Cu (solid circles and light solid
line) and Al (solid triangles and dashed line). The heavy solid line is
the stress predicted by a Frenkel sinusoidal model for Cu. The data
points are the Hellman–Feynman stresses and the lighter weight lines
represent the derivatives of the smoothed fits to the energies.

The normalized shear strength: The close similarity
between the normalized shear strengths of Al and Cu is
probably fortuitous. The unrelaxed shear strengths are
not that close (�0.13G �u for Al vs. �0.1G �u for Cu)
and the relaxation patterns are very different.
Nonetheless, since our recently published calculations
for W also produce a shear strength near 0.085G �r, this
appears to be a common value for the ideal shear
strength of a metal [11].

The relaxation strain: While more detailed
calculations will be conducted in the near future, the
difference in the relaxation strains of Al and Cu can be
explained, qualitatively, from their elastic behavior. To
phrase this discussion, we first present the Voigt
compliance tensors (Eqs. (8a) and (8b)) for Al and Cu
in the form they take after transformation into the
coordinate system shown in Fig. 2.

Since the [1 1 1] direction is a three-fold symmetry
axis in fcc, the compliance tensor has a superficially
trigonal symmetry; the non-diagonal elements S �15 and
S �25 do not ordinarily vanish. However, S �15= −S �25

and, since S �35=0, the imposition of a shear stress in
the [1 1 2� ] direction on (1 1 1), which is �13 (or �5 in the
Voigt notation) produces a shear of type [1 1 2� ](1 1 1)
that is relaxed by a shear in the (1 1 1) plane,
�11= −�22, of precisely the type that is dominant in Cu
(Table 3).

However, the value of S �15 is determined by the elastic
anisotropy factor, � (=C11−C12−2C44), according to
the relation,

S �15=
�

3�2(C11−C12)C44

. (9)

It follows that S �15 increases with �, and vanishes when
�=0. The strong elastic anisotropy of Cu has the
consequence that its elastic, in-plane relaxation is much
greater than that in the more isotropic Al.

boundary of a stacking fault in {1 1 1}. Hence one
would expect this shear to be the soft shear in materials
like Cu that twin and form stacking faults. However, Al
has a high stacking fault energy, and one might expect
some other shear to be preferred. The reason that
�1 1 2�{1 1 1} is the soft shear in Al can be explained
by the fact that the applied shear is uniform and the
local atomic coordination near the instability resembles
that of the relaxed crystal more than that of a twinned
or faulted one.

If bulk Al were strained beyond its shear instability,
the instability would necessarily resolve itself in a
shower of dislocations, twins or faults, whichever were
easier to achieve. It is at this point that the choice
between total dislocations, partial dislocations or twins
would be made. Since even a small shear carries elastic
energy equivalent to that of a high density of
dislocations, the elastic energy of a crystal strained to
instability is sufficient to carry it into whatever defect
state is preferred.

SAl(�=0)=

�
�
�
�
�
�
�
�
�

0.0139 −0.0051 −0.0045 0 −0.0019 0

−0.0051 0.0139 −0.0045 0 0.0019 0

−0.0045 −0.0045 0.0132 0 0 0

0 0 0 0.0408 0 0.0038

−0.0019 0.0019 0 0 0.0408 0

0 0 0 0.0038 0 0.0380

�
�
�
�
�
�
�
�
�

GPa−1, (8a)

S �Cu(�=0)=

�
�
�
�
�
�
�
�
�

0.0077 −0.0038 −0.0014 0 −0.0069 0

−0.0038 0.0077 −0.0014 0 0.0069 0

−0.0014 −0.0014 0.0052 0 0 0

0 0 0 0.0328 0 0.0138

−0.0069 0.0069 0 0 0.0328 0

0 0 0 0.0138 0 0.0230

�
�
�
�
�
�
�
�
�

GPa−1. (8b)
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SAl(�=0.15)=

�
�
�
�
�
�
�
�
�

0.0135 −0.0055 −0.0027 0 0.0026 0

−0.0055 0.0154 −0.0072 0 −0.0063 0

−0.0027 −0.0072 0.0176 0 0.0177 0

0 0 0 0.0353 0 0.0092

0.0026 −0.0063 0.0177 0 0.0730 0

0 0 0 0.0092 0 0.0394

�
�
�
�
�
�
�
�
�

GPa-1, (10a)

SCu(�=0.13)=

�
�
�
�
�
�
�
�
�

0.0087 −0.0046 −0.0027 0 −0.0128 0

−0.0046 0.0083 −0.0004 0 0.0109 0

−0.0027 −0.0004 0.0067 0 0.0097 0

0 0 0 0.0239 0 0.0109

−0.0128 0.0109 0.0097 0 0.0680 0

0 0 0 0.0109 0 0.0217

�
�
�
�
�
�
�
�
�

GPa-1. (10b)

A shear of type [1 1 2� ](1 1 1) breaks the symmetry
of the fcc crystal. The symmetry of the strained crys-
tal allows S �15� −S �25 and S �35�0, so there can be a
relaxation strain, �33, perpendicular to the (1 1 1)
plane and a net volume change. The symmetry
change is exploited very quickly in the almost
isotropic Al crystal, which rapidly develops significant
values of �33, �11+�22, and �V. In the anisotropic Cu
crystal, in contrast, the finite-strain effect is small,
and the relaxation strain is only slightly perturbed
from its symmetry in the relaxed state.

The qualitative difference between the relaxation
strains of Al and Cu is also observed experimentally.
Approximate compliance tensors of Al and Cu at the
shear instability are presented above (Eqs. (10a) and
(10b)), as estimated from the third-order elastic con-
stants tabulated in [10]. Even though the experimental
data were taken at strains of only a fraction of a
percent, the measured third order elastic constants do
predict that the S �15 and S �25 compliances of Al will
change sign. The compliances also predict the relative
magnitudes and sign of the relaxations in Al, and the
signs of the relaxations in Cu. Finally, one can ex-
tract estimates of the sign and magnitude of the vol-
ume change with applied shear by summing S �15, S �25

and S �35. For Al, the volumetric compliance is 1.4%
and for Cu, 0.8%. These figures are again qualita-
tively consistent with the theoretical results given in
Table 3.
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